/* * dh.c - Diffie-Helman algorithm code against SSH 2 * * This file is part of the SSH Library * * Copyright (c) 2003-2008 by Aris Adamantiadis * Copyright (c) 2009 by Andreas Schneider * * The SSH Library is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * The SSH Library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with the SSH Library; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. */ /* * Let us resume the dh protocol. * Each side computes a private prime number, x at client side, y at server * side. * g and n are two numbers common to every ssh software. * client's public key (e) is calculated by doing: * e = g^x mod p * client sents e to the server. * the server computes his own public key, f * f = g^y mod p * it sents it to the client * the common key K is calculated by the client by doing * k = f^x mod p * the server does the same with the client public key e * k' = e^y mod p * if everything went correctly, k and k' are equal */ #include #include #include #ifndef _WIN32 #include #endif #include "libssh/priv.h" #include "libssh/crypto.h" #ifdef HAVE_LIBCRYPTO #include #include #include #endif static unsigned char p_value[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE6, 0x53, 0x81, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; #define P_LEN 128 /* Size in bytes of the p number */ static unsigned long g_int = 2 ; /* G is defined as 2 by the ssh2 standards */ static bignum g; static bignum p; static int ssh_crypto_initialized; int ssh_get_random(void *where, int len, int strong){ #ifdef HAVE_LIBGCRYPT /* variable not used in gcrypt */ (void) strong; /* not using GCRY_VERY_STRONG_RANDOM which is a bit overkill */ gcry_randomize(where,len,GCRY_STRONG_RANDOM); return 1; #elif defined HAVE_LIBCRYPTO if (strong) { return RAND_bytes(where,len); } else { return RAND_pseudo_bytes(where,len); } #endif /* never reached */ return 1; } /* * This inits the values g and p which are used for DH key agreement * FIXME: Make the function thread safe by adding a semaphore or mutex. */ int ssh_crypto_init(void) { if (ssh_crypto_initialized == 0) { #ifdef HAVE_LIBGCRYPT gcry_check_version(NULL); if (!gcry_control(GCRYCTL_INITIALIZATION_FINISHED_P,0)) { gcry_control(GCRYCTL_INIT_SECMEM, 4096); gcry_control(GCRYCTL_INITIALIZATION_FINISHED,0); } #endif g = bignum_new(); if (g == NULL) { return -1; } bignum_set_word(g,g_int); #ifdef HAVE_LIBGCRYPT bignum_bin2bn(p_value, P_LEN, &p); if (p == NULL) { bignum_free(g); g = NULL; return -1; } #elif defined HAVE_LIBCRYPTO p = bignum_new(); if (p == NULL) { bignum_free(g); g = NULL; return -1; } bignum_bin2bn(p_value, P_LEN, p); OpenSSL_add_all_algorithms(); #endif ssh_crypto_initialized = 1; } return 0; } void ssh_crypto_finalize(void) { if (ssh_crypto_initialized) { bignum_free(g); g = NULL; bignum_free(p); p = NULL; } } /* prints the bignum on stderr */ void ssh_print_bignum(const char *which, bignum num) { #ifdef HAVE_LIBGCRYPT unsigned char *hex = NULL; bignum_bn2hex(num, &hex); #elif defined HAVE_LIBCRYPTO char *hex = NULL; hex = bignum_bn2hex(num); #endif fprintf(stderr, "%s value: ", which); fprintf(stderr, "%s\n", (hex == NULL) ? "(null)" : (char *) hex); SAFE_FREE(hex); } /** * @brief Convert a buffer into a colon separated hex string. * The caller has to free the memory. * * @param what What should be converted to a hex string. * * @param len Length of the buffer to convert. * * @return The hex string or NULL on error. */ char *ssh_get_hexa(const unsigned char *what, size_t len) { char *hexa = NULL; size_t i; hexa = malloc(len * 3 + 1); if (hexa == NULL) { return NULL; } ZERO_STRUCTP(hexa); for (i = 0; i < len; i++) { char hex[4]; snprintf(hex, sizeof(hex), "%02x:", what[i]); strcat(hexa, hex); } hexa[(len * 3) - 1] = '\0'; return hexa; } /** * @brief Print a buffer as colon separated hex string. * * @param descr Description printed infront of the hex string. * * @param what What should be converted to a hex string. * * @param len Length of the buffer to convert. */ void ssh_print_hexa(const char *descr, const unsigned char *what, size_t len) { char *hexa = ssh_get_hexa(what, len); if (hexa == NULL) { return; } printf("%s: %s\n", descr, hexa); } int dh_generate_x(SSH_SESSION *session) { session->next_crypto->x = bignum_new(); if (session->next_crypto->x == NULL) { return -1; } #ifdef HAVE_LIBGCRYPT bignum_rand(session->next_crypto->x, 128); #elif defined HAVE_LIBCRYPTO bignum_rand(session->next_crypto->x, 128, 0, -1); #endif /* not harder than this */ #ifdef DEBUG_CRYPTO ssh_print_bignum("x", session->next_crypto->x); #endif return 0; } /* used by server */ int dh_generate_y(SSH_SESSION *session) { session->next_crypto->y = bignum_new(); if (session->next_crypto->y == NULL) { return -1; } #ifdef HAVE_LIBGCRYPT bignum_rand(session->next_crypto->y, 128); #elif defined HAVE_LIBCRYPTO bignum_rand(session->next_crypto->y, 128, 0, -1); #endif /* not harder than this */ #ifdef DEBUG_CRYPTO ssh_print_bignum("y", session->next_crypto->y); #endif return 0; } /* used by server */ int dh_generate_e(SSH_SESSION *session) { #ifdef HAVE_LIBCRYPTO bignum_CTX ctx = bignum_ctx_new(); if (ctx == NULL) { return -1; } #endif session->next_crypto->e = bignum_new(); if (session->next_crypto->e == NULL) { #ifdef HAVE_LIBCRYPTO bignum_ctx_free(ctx); #endif return -1; } #ifdef HAVE_LIBGCRYPT bignum_mod_exp(session->next_crypto->e, g, session->next_crypto->x, p); #elif defined HAVE_LIBCRYPTO bignum_mod_exp(session->next_crypto->e, g, session->next_crypto->x, p, ctx); #endif #ifdef DEBUG_CRYPTO ssh_print_bignum("e", session->next_crypto->e); #endif #ifdef HAVE_LIBCRYPTO bignum_ctx_free(ctx); #endif return 0; } int dh_generate_f(SSH_SESSION *session) { #ifdef HAVE_LIBCRYPTO bignum_CTX ctx = bignum_ctx_new(); if (ctx == NULL) { return -1; } #endif session->next_crypto->f = bignum_new(); if (session->next_crypto->f == NULL) { #ifdef HAVE_LIBCRYPTO bignum_ctx_free(ctx); #endif return -1; } #ifdef HAVE_LIBGCRYPT bignum_mod_exp(session->next_crypto->f, g, session->next_crypto->y, p); #elif defined HAVE_LIBCRYPTO bignum_mod_exp(session->next_crypto->f, g, session->next_crypto->y, p, ctx); #endif #ifdef DEBUG_CRYPTO ssh_print_bignum("f", session->next_crypto->f); #endif #ifdef HAVE_LIBCRYPTO bignum_ctx_free(ctx); #endif return 0; } ssh_string make_bignum_string(bignum num) { ssh_string ptr = NULL; int pad = 0; unsigned int len = bignum_num_bytes(num); unsigned int bits = bignum_num_bits(num); /* Remember if the fist bit is set, it is considered as a * negative number. So 0's must be appended */ if (!(bits % 8) && bignum_is_bit_set(num, bits - 1)) { pad++; } #ifdef DEBUG_CRYPTO fprintf(stderr, "%d bits, %d bytes, %d padding\n", bits, len, pad); #endif /* DEBUG_CRYPTO */ ptr = malloc(4 + len + pad); if (ptr == NULL) { return NULL; } ptr->size = htonl(len + pad); if (pad) { ptr->string[0] = 0; } #ifdef HAVE_LIBGCRYPT bignum_bn2bin(num, len, ptr->string + pad); #elif HAVE_LIBCRYPTO bignum_bn2bin(num, ptr->string + pad); #endif return ptr; } bignum make_string_bn(ssh_string string){ bignum bn = NULL; unsigned int len = string_len(string); #ifdef DEBUG_CRYPTO fprintf(stderr, "Importing a %d bits, %d bytes object ...\n", len * 8, len); #endif /* DEBUG_CRYPTO */ #ifdef HAVE_LIBGCRYPT bignum_bin2bn(string->string, len, &bn); #elif defined HAVE_LIBCRYPTO bn = bignum_bin2bn(string->string, len, NULL); #endif return bn; } ssh_string dh_get_e(SSH_SESSION *session) { return make_bignum_string(session->next_crypto->e); } /* used by server */ ssh_string dh_get_f(SSH_SESSION *session) { return make_bignum_string(session->next_crypto->f); } void dh_import_pubkey(SSH_SESSION *session, ssh_string pubkey_string) { session->next_crypto->server_pubkey = pubkey_string; } int dh_import_f(SSH_SESSION *session, ssh_string f_string) { session->next_crypto->f = make_string_bn(f_string); if (session->next_crypto->f == NULL) { return -1; } #ifdef DEBUG_CRYPTO ssh_print_bignum("f",session->next_crypto->f); #endif return 0; } /* used by the server implementation */ int dh_import_e(SSH_SESSION *session, ssh_string e_string) { session->next_crypto->e = make_string_bn(e_string); if (session->next_crypto->e == NULL) { return -1; } #ifdef DEBUG_CRYPTO ssh_print_bignum("e",session->next_crypto->e); #endif return 0; } int dh_build_k(SSH_SESSION *session) { #ifdef HAVE_LIBCRYPTO bignum_CTX ctx = bignum_ctx_new(); if (ctx == NULL) { return -1; } #endif session->next_crypto->k = bignum_new(); if (session->next_crypto->k == NULL) { #ifdef HAVE_LIBCRYPTO bignum_ctx_free(ctx); #endif return -1; } /* the server and clients don't use the same numbers */ #ifdef HAVE_LIBGCRYPT if(session->client) { bignum_mod_exp(session->next_crypto->k, session->next_crypto->f, session->next_crypto->x, p); } else { bignum_mod_exp(session->next_crypto->k, session->next_crypto->e, session->next_crypto->y, p); } #elif defined HAVE_LIBCRYPTO if (session->client) { bignum_mod_exp(session->next_crypto->k, session->next_crypto->f, session->next_crypto->x, p, ctx); } else { bignum_mod_exp(session->next_crypto->k, session->next_crypto->e, session->next_crypto->y, p, ctx); } #endif #ifdef DEBUG_CRYPTO ssh_print_hexa("Session server cookie", session->server_kex.cookie, 16); ssh_print_hexa("Session client cookie", session->client_kex.cookie, 16); ssh_print_bignum("Shared secret key", session->next_crypto->k); #endif #ifdef HAVE_LIBCRYPTO bignum_ctx_free(ctx); #endif return 0; } /* static void sha_add(ssh_string str,SHACTX ctx){ sha1_update(ctx,str,string_len(str)+4); #ifdef DEBUG_CRYPTO ssh_print_hexa("partial hashed sessionid",str,string_len(str)+4); #endif } */ int make_sessionid(SSH_SESSION *session) { SHACTX ctx; ssh_string num = NULL; ssh_string str = NULL; ssh_buffer server_hash = NULL; ssh_buffer client_hash = NULL; ssh_buffer buf = NULL; uint32_t len; int rc = SSH_ERROR; enter_function(); ctx = sha1_init(); if (ctx == NULL) { return rc; } buf = buffer_new(); if (buf == NULL) { return rc; } str = string_from_char(session->clientbanner); if (str == NULL) { goto error; } if (buffer_add_ssh_string(buf, str) < 0) { goto error; } string_free(str); str = string_from_char(session->serverbanner); if (str == NULL) { goto error; } if (buffer_add_ssh_string(buf, str) < 0) { goto error; } if (session->client) { server_hash = session->in_hashbuf; client_hash = session->out_hashbuf; } else { server_hash = session->out_hashbuf; client_hash = session->in_hashbuf; } if (buffer_add_u32(server_hash, 0) < 0) { goto error; } if (buffer_add_u8(server_hash, 0) < 0) { goto error; } if (buffer_add_u32(client_hash, 0) < 0) { goto error; } if (buffer_add_u8(client_hash, 0) < 0) { goto error; } len = ntohl(buffer_get_len(client_hash)); if (buffer_add_u32(buf,len) < 0) { goto error; } if (buffer_add_data(buf, buffer_get(client_hash), buffer_get_len(client_hash)) < 0) { goto error; } len = ntohl(buffer_get_len(server_hash)); if (buffer_add_u32(buf, len) < 0) { goto error; } if (buffer_add_data(buf, buffer_get(server_hash), buffer_get_len(server_hash)) < 0) { goto error; } len = string_len(session->next_crypto->server_pubkey) + 4; if (buffer_add_data(buf, session->next_crypto->server_pubkey, len) < 0) { goto error; } num = make_bignum_string(session->next_crypto->e); if (num == NULL) { goto error; } len = string_len(num) + 4; if (buffer_add_data(buf, num, len) < 0) { goto error; } string_free(num); num = make_bignum_string(session->next_crypto->f); if (num == NULL) { goto error; } len = string_len(num) + 4; if (buffer_add_data(buf, num, len) < 0) { goto error; } string_free(num); num = make_bignum_string(session->next_crypto->k); if (num == NULL) { goto error; } len = string_len(num) + 4; if (buffer_add_data(buf, num, len) < 0) { goto error; } #ifdef DEBUG_CRYPTO ssh_print_hexa("hash buffer", buffer_get(buf), buffer_get_len(buf)); #endif sha1_update(ctx, buffer_get(buf), buffer_get_len(buf)); sha1_final(session->next_crypto->session_id, ctx); #ifdef DEBUG_CRYPTO printf("Session hash: "); ssh_print_hexa("session id", session->next_crypto->session_id, SHA_DIGEST_LEN); #endif rc = SSH_OK; error: buffer_free(buf); buffer_free(client_hash); buffer_free(server_hash); session->in_hashbuf = NULL; session->out_hashbuf = NULL; string_free(str); string_free(num); leave_function(); return rc; } int hashbufout_add_cookie(SSH_SESSION *session) { session->out_hashbuf = buffer_new(); if (session->out_hashbuf == NULL) { return -1; } if (buffer_add_u8(session->out_hashbuf, 20) < 0) { buffer_reinit(session->out_hashbuf); return -1; } if (session->server) { if (buffer_add_data(session->out_hashbuf, session->server_kex.cookie, 16) < 0) { buffer_reinit(session->out_hashbuf); return -1; } } else { if (buffer_add_data(session->out_hashbuf, session->client_kex.cookie, 16) < 0) { buffer_reinit(session->out_hashbuf); return -1; } } return 0; } int hashbufin_add_cookie(SSH_SESSION *session, unsigned char *cookie) { session->in_hashbuf = buffer_new(); if (session->in_hashbuf == NULL) { return -1; } if (buffer_add_u8(session->in_hashbuf, 20) < 0) { buffer_reinit(session->in_hashbuf); return -1; } if (buffer_add_data(session->in_hashbuf,cookie, 16) < 0) { buffer_reinit(session->in_hashbuf); return -1; } return 0; } static int generate_one_key(ssh_string k, unsigned char session_id[SHA_DIGEST_LEN], unsigned char output[SHA_DIGEST_LEN], char letter) { SHACTX ctx = NULL; ctx = sha1_init(); if (ctx == NULL) { return -1; } sha1_update(ctx, k, string_len(k) + 4); sha1_update(ctx, session_id, SHA_DIGEST_LEN); sha1_update(ctx, &letter, 1); sha1_update(ctx, session_id, SHA_DIGEST_LEN); sha1_final(output, ctx); return 0; } int generate_session_keys(SSH_SESSION *session) { ssh_string k_string = NULL; SHACTX ctx = NULL; int rc = -1; enter_function(); k_string = make_bignum_string(session->next_crypto->k); if (k_string == NULL) { goto error; } /* IV */ if (session->client) { if (generate_one_key(k_string, session->next_crypto->session_id, session->next_crypto->encryptIV, 'A') < 0) { goto error; } if (generate_one_key(k_string, session->next_crypto->session_id, session->next_crypto->decryptIV, 'B') < 0) { goto error; } } else { if (generate_one_key(k_string, session->next_crypto->session_id, session->next_crypto->decryptIV, 'A') < 0) { goto error; } if (generate_one_key(k_string, session->next_crypto->session_id, session->next_crypto->encryptIV, 'B') < 0) { goto error; } } if (session->client) { if (generate_one_key(k_string, session->next_crypto->session_id, session->next_crypto->encryptkey, 'C') < 0) { goto error; } if (generate_one_key(k_string, session->next_crypto->session_id, session->next_crypto->decryptkey, 'D') < 0) { goto error; } } else { if (generate_one_key(k_string, session->next_crypto->session_id, session->next_crypto->decryptkey, 'C') < 0) { goto error; } if (generate_one_key(k_string, session->next_crypto->session_id, session->next_crypto->encryptkey, 'D') < 0) { goto error; } } /* some ciphers need more than 20 bytes of input key */ /* XXX verify it's ok for server implementation */ if (session->next_crypto->out_cipher->keysize > SHA_DIGEST_LEN * 8) { ctx = sha1_init(); if (ctx == NULL) { goto error; } sha1_update(ctx, k_string, string_len(k_string) + 4); sha1_update(ctx, session->next_crypto->session_id, SHA_DIGEST_LEN); sha1_update(ctx, session->next_crypto->encryptkey, SHA_DIGEST_LEN); sha1_final(session->next_crypto->encryptkey + SHA_DIGEST_LEN, ctx); } if (session->next_crypto->in_cipher->keysize > SHA_DIGEST_LEN * 8) { ctx = sha1_init(); sha1_update(ctx, k_string, string_len(k_string) + 4); sha1_update(ctx, session->next_crypto->session_id, SHA_DIGEST_LEN); sha1_update(ctx, session->next_crypto->decryptkey, SHA_DIGEST_LEN); sha1_final(session->next_crypto->decryptkey + SHA_DIGEST_LEN, ctx); } if(session->client) { if (generate_one_key(k_string, session->next_crypto->session_id, session->next_crypto->encryptMAC, 'E') < 0) { goto error; } if (generate_one_key(k_string, session->next_crypto->session_id, session->next_crypto->decryptMAC, 'F') < 0) { goto error; } } else { if (generate_one_key(k_string, session->next_crypto->session_id, session->next_crypto->decryptMAC, 'E') < 0) { goto error; } if (generate_one_key(k_string, session->next_crypto->session_id, session->next_crypto->encryptMAC, 'F') < 0) { goto error; } } #ifdef DEBUG_CRYPTO ssh_print_hexa("Encrypt IV", session->next_crypto->encryptIV, SHA_DIGEST_LEN); ssh_print_hexa("Decrypt IV", session->next_crypto->decryptIV, SHA_DIGEST_LEN); ssh_print_hexa("Encryption key", session->next_crypto->encryptkey, session->next_crypto->out_cipher->keysize); ssh_print_hexa("Decryption key", session->next_crypto->decryptkey, session->next_crypto->in_cipher->keysize); ssh_print_hexa("Encryption MAC", session->next_crypto->encryptMAC, SHA_DIGEST_LEN); ssh_print_hexa("Decryption MAC", session->next_crypto->decryptMAC, 20); #endif rc = 0; error: string_free(k_string); leave_function(); return rc; } /** \addtogroup ssh_session * @{ */ /** * @brief Allocates a buffer with the MD5 hash of the server public key. * * @param session The SSH session to use. * * @param hash The buffer to allocate. * * @return The bytes allocated or < 0 on error. * * @warning It is very important that you verify at some moment that the hash * matches a known server. If you don't do it, cryptography wont help * you at making things secure * * @see ssh_is_server_known() * @see ssh_get_hexa() * @see ssh_print_hexa() */ int ssh_get_pubkey_hash(SSH_SESSION *session, unsigned char **hash) { ssh_string pubkey; MD5CTX ctx; unsigned char *h; if (session == NULL || hash == NULL) { return -1; } *hash = NULL; h = malloc(sizeof(unsigned char *) * MD5_DIGEST_LEN); if (h == NULL) { return -1; } ctx = md5_init(); if (ctx == NULL) { SAFE_FREE(h); return -1; } pubkey = session->current_crypto->server_pubkey; md5_update(ctx, pubkey->string, string_len(pubkey)); md5_final(h, ctx); *hash = h; return MD5_DIGEST_LEN; } /** \addtogroup ssh_session * @{ */ /** * @brief Deallocate the hash obtained by ssh_get_pubkey_hash. * This is required under Microsoft platform as this library might use a * different C library than your software, hence a different heap. * * @param hash The buffer to deallocate. * * @see ssh_get_pubkey_hash() */ void ssh_clean_pubkey_hash(unsigned char **hash) { SAFE_FREE(*hash); *hash = NULL; } ssh_string ssh_get_pubkey(SSH_SESSION *session){ return string_copy(session->current_crypto->server_pubkey); } static int match(const char *group, const char *object){ const char *a; const char *z; a = z = group; do { a = strchr(z, ','); if (a == NULL) { if (strcmp(z, object) == 0) { return 1; } return 0; } else { if (strncmp(z, object, a - z) == 0) { return 1; } } z = a + 1; } while(1); /* not reached */ return 0; } int sig_verify(SSH_SESSION *session, ssh_public_key pubkey, SIGNATURE *signature, unsigned char *digest, int size) { #ifdef HAVE_LIBGCRYPT gcry_error_t valid = 0; gcry_sexp_t gcryhash; #elif defined HAVE_LIBCRYPTO int valid = 0; #endif unsigned char hash[SHA_DIGEST_LEN + 1] = {0}; sha1(digest, size, hash + 1); #ifdef DEBUG_CRYPTO ssh_print_hexa("Hash to be verified with dsa", hash + 1, SHA_DIGEST_LEN); #endif switch(pubkey->type) { case TYPE_DSS: #ifdef HAVE_LIBGCRYPT valid = gcry_sexp_build(&gcryhash, NULL, "%b", SHA_DIGEST_LEN + 1, hash); if (valid != 0) { ssh_set_error(session, SSH_FATAL, "RSA error: %s", gcry_strerror(valid)); return -1; } valid = gcry_pk_verify(signature->dsa_sign, gcryhash, pubkey->dsa_pub); gcry_sexp_release(gcryhash); if (valid == 0) { return 0; } if (gcry_err_code(valid) != GPG_ERR_BAD_SIGNATURE) { ssh_set_error(session, SSH_FATAL, "DSA error: %s", gcry_strerror(valid)); return -1; } #elif defined HAVE_LIBCRYPTO valid = DSA_do_verify(hash + 1, SHA_DIGEST_LEN, signature->dsa_sign, pubkey->dsa_pub); if (valid == 1) { return 0; } if (valid == -1) { ssh_set_error(session, SSH_FATAL, "DSA error: %s", ERR_error_string(ERR_get_error(), NULL)); return -1; } #endif ssh_set_error(session, SSH_FATAL, "Invalid DSA signature"); return -1; case TYPE_RSA: case TYPE_RSA1: #ifdef HAVE_LIBGCRYPT valid = gcry_sexp_build(&gcryhash, NULL, "(data(flags pkcs1)(hash sha1 %b))", SHA_DIGEST_LEN, hash + 1); if (valid != 0) { ssh_set_error(session, SSH_FATAL, "RSA error: %s", gcry_strerror(valid)); return -1; } valid = gcry_pk_verify(signature->rsa_sign,gcryhash,pubkey->rsa_pub); gcry_sexp_release(gcryhash); if (valid == 0) { return 0; } if (gcry_err_code(valid) != GPG_ERR_BAD_SIGNATURE) { ssh_set_error(session, SSH_FATAL, "RSA error: %s", gcry_strerror(valid)); return -1; } #elif defined HAVE_LIBCRYPTO valid = RSA_verify(NID_sha1, hash + 1, SHA_DIGEST_LEN, signature->rsa_sign->string, string_len(signature->rsa_sign), pubkey->rsa_pub); if (valid == 1) { return 0; } if (valid == -1) { ssh_set_error(session, SSH_FATAL, "RSA error: %s", ERR_error_string(ERR_get_error(), NULL)); return -1; } #endif ssh_set_error(session, SSH_FATAL, "Invalid RSA signature"); return -1; default: ssh_set_error(session, SSH_FATAL, "Unknown public key type"); return -1; } return -1; } int signature_verify(SSH_SESSION *session, ssh_string signature) { ssh_public_key pubkey = NULL; SIGNATURE *sign = NULL; int err; enter_function(); if (session->options->dont_verify_hostkey) { ssh_log(session, SSH_LOG_FUNCTIONS, "Host key wasn't verified"); leave_function(); return 0; } pubkey = publickey_from_string(session,session->next_crypto->server_pubkey); if(pubkey == NULL) { leave_function(); return -1; } if (session->options->wanted_methods[SSH_HOSTKEYS]) { if(!match(session->options->wanted_methods[SSH_HOSTKEYS],pubkey->type_c)) { ssh_set_error(session, SSH_FATAL, "Public key from server (%s) doesn't match user preference (%s)", pubkey->type_c, session->options->wanted_methods[SSH_HOSTKEYS]); publickey_free(pubkey); leave_function(); return -1; } } sign = signature_from_string(session, signature, pubkey, pubkey->type); if (sign == NULL) { ssh_set_error(session, SSH_FATAL, "Invalid signature blob"); publickey_free(pubkey); leave_function(); return -1; } ssh_log(session, SSH_LOG_FUNCTIONS, "Going to verify a %s type signature", pubkey->type_c); err = sig_verify(session,pubkey,sign, session->next_crypto->session_id,SHA_DIGEST_LEN); signature_free(sign); session->next_crypto->server_pubkey_type = pubkey->type_c; publickey_free(pubkey); leave_function(); return err; } /** @} */ /* vim: set ts=2 sw=2 et cindent: */